Submitted by: sdemir   Date: 2009-03-11 21:50
Hyperinsulinism in Infancy and Childhood: When an Insulin Level Is Not Always Enough
Andrew A. Palladinoa, Michael J. Bennett and Charles A. Stanley




Mechanisms of insulin secretion in pancreatic beta-cells.
Increase in ATP:ADP ratio inhibits the KATP channel, resulting in closure of the channel, depolarization of the membrane, influx of calcium, and release of insulin. Insulin secretion is stimulated by glucose oxidation via GK and by leucine stimulation of glutamate oxidation via GDH. Abnormally increased pyruvate levels in the beta-cell will stimulate insulin secretion. GLUT2, glucose transporter 2.


Background: Hypoglycemia in infants and children can lead to seizures, developmental delay, and permanent brain damage. Hyperinsulinism (HI) is the most common cause of both transient and permanent disorders of hypoglycemia. HI is characterized by dysregulated insulin secretion, which results in persistent mild to severe hypoglycemia. The various forms of HI represent a group of clinically, genetically, and morphologically heterogeneous disorders.

Content: Congenital hyperinsulinism is associated with mutations of SUR-1 and Kir6.2, glucokinase, glutamate dehydrogenase, short-chain 3-hydroxyacyl-CoA dehydrogenase, and ectopic expression on beta-cell plasma membrane of SLC16A1. Hyperinsulinism can be associated with perinatal stress such as birth asphyxia, maternal toxemia, prematurity, or intrauterine growth retardation, resulting in prolonged neonatal hypoglycemia. Mimickers of hyperinsulinism include neonatal panhypopituitarism, drug-induced hypoglycemia, insulinoma, antiinsulin and insulin-receptor stimulating antibodies, Beckwith-Wiedemann Syndrome, and congenital disorders of glycosylation. Laboratory testing for hyperinsulinism may include quantification of blood glucose, plasma insulin, plasma beta-hydroxybutyrate, plasma fatty acids, plasma ammonia, plasma acylcarnitine profile, and urine organic acids. Genetic testing is available through commercial laboratories for genes known to be associated with hyperinsulinism. Acute insulin response (AIR) tests are useful in phenotypic characterization. Imaging and histologic tools are also available for diagnosing and classifying hyperinsulinism. The goal of treatment in infants with hyperinsulinism is to prevent brain damage from hypoglycemia by maintaining plasma glucose levels above 700 mg/L (70 mg/dL) through pharmacologic or surgical therapy.

Summary: The management of hyperinsulinism requires a multidisciplinary approach that includes pediatric endocrinologists, radiologists, surgeons, and pathologists who are trained in diagnosing, identifying, and treating hyperinsulinism.
Tagler: Hyperinsulinism

Comments: (0)

Henüz yorum yapılmamış